تغییرات عملکرد علوفه و برخی خصوصیات زراعی و فیزیولوژیک کوشیا، ارزن، سورگوم و ذرت علوفه‌ای تحت تنش خشکی

نوع مقاله: علمی پژوهشی

نویسندگان

بخش تحقیقات زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کرمان، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمان، ایران

چکیده

تعیین مناسب­ترین گیاه علوفه‌ای متحمل به خشکی در شرایط کم آبی استان کرمان با انجام آزمایشی به‌صورت‌ اسپیلت پلات در قالب طرح بلوک­های کامل تصادفی با 4 تکرار طی دو سال (96-95) در ایستگاه تحقیقات کشاورزی جوپار کرمان بررسی شد. تنش خشکی، به­عنوان عامل اصلی، در سه سطح مشتمل بر آبیاری نرمال (آبیاری بر اساس80 میلی­متر تبخیر تجمعی از تشتک تبخیر کلاس A)، تنش متوسط (آبیاری بر اساس 130 میلی­متر تبخیر تجمعی از تشتک تبخیر کلاس A) و تنش شدید (آبیاری بر اساس 180 میلی‌متر تبخیر تجمعی از تشتک تبخیر کلاس A) و نوع گیاه نظیر کوشیا، ارزن مرواریدی، سورگوم و ذرت علوفه‌ای، به عنوان عامل فرعی، در نظر گرفته شدند. سورگوم در تمام سطوح تنش، بیشترین عملکرد را در مقایسه با سه گیاه دیگر تولید نمود. این گیاه در شرایط آبیاری نرمال به­ترتیب با تولید 101241 کیلوگرم علوفه تر و 30181 کیلوگرم علوفه خشک در هکتار بیشترین عملکرد را به خود اختصاص داد. در تمام انواع گیاهان مورد مطالعه با افزایش تنش خشکی عملکرد کاهش یافت ولی درصد کاهش عملکرد در کوشیا نسبت به سایر گیاهان کمتر بود. ارزن با 89/11 و کوشیا با 82/9 درصد پروتئین خام به­ترتیب بیشترین، و ذرت و سورگوم به­ترتیب با 97/8 و 19/8 درصد کمترین پروتئین خام را داشتند. با افزایش تنش خشکی محتوی نسبی آب برگ کاهش ولی مقدار مالون‌دی‌آلدهید در هر چهار گیاه مورد بررسی افزایش یافتند. کوشیا، در میان چهار گونه­ی گیاهی مورد آزمایش، کمترین مقدار مالون‌دی‌آلدهید را داشت. مقدار کلروفیلa ، تحت تنش ملایم و شدید نسبت به شرایط نرمال، به­ترتیب 3/16 و 7/20 درصد کاهش یافت. کوشیا در هر دو سال و در تمام سطوح تنش، پس از آن سورگوم، از بیشترین محتوی سدیم برخوردار بودند. محتوای پتاسیم سورگوم در شرایط تنش شدید و متوسط در مقایسه با سایر گیاهان بیشتر بود. بر اساس نتایج این تحقیق سورگوم با بیشترین عملکرد علوفه، ارزن با تولید علوفه با کیفیت بالا و کوشیا به عنوان متحمل‌ترین گیاه به تنش خشکی شناخته شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Variation of Forage Yields and some Agronomic and Physiological Characteristics of Kochia, Millet, Sorghum and Maize under Drought Stress

نویسندگان [English]

  • Hamid Najafinezhad
  • Seyed Zabihollah Ravari
  • Mohammad Ali Javaheri
Agricultural and Horticultural Research Department, Kerman Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Kerman, Iran
چکیده [English]

To determine resistance of four species forage crops to drought stress an experiment was conducted for two years (2016-2017) in Kerman – Iran. In this study a randomized complete block design arranged in a split plot experiment with four replications was used. Drought stress treatments consisted of normal, moderate and severes drought levels (80, 130 and 180 mm cumulative pan evaporation respectively) were assigned to main plots and four forage plant types (maize, kochia, millet and sorghum) to subplots. Results indicated that with increasing of drought stress, leaf relative water content decreased but MDA (malondialdehyde) content increased. Among the four forage plants under study, kochia had the lowest MDA content. Chlorophyll a under moderate and severe drought stresses decreased by 16.3% and 20.7% respectively, as compared to normal drought. Kochia, in both years and under all levels of drought stresses, had the highest sodium percent in shoots. Sorghum had the highest amount of potassium content in shoot, as compared to other plants under severe and moderate levels of drought stresses. Sorghum produced the highest the forage yield at all levels of drought stresses and it produced highest fresh and dry (101241 kg.ha-1 and 30181 kg.ha-1) respectively under normal irrigation. Increasing drought stress resulted in the reduction of forage yield of all plant under study but yield reduction in kochia was lower than the yield of other plants. Millet and kochia with %11.9 and %9.82 crude protein contents respectively produced higher crude protein contents in this respect. Based on the results of this study, sorghum produced highest forage yield, millet good quality forage and kochia was the most tolerant plant to drought stress condition.

کلیدواژه‌ها [English]

  • Chlorophyll
  • Drought stress
  • Forage crops
  • Malondialdehyde
  • Yield
  • · Amaral, S.R., M.A. Lira, J.N. Tabosa, M.V.F. Santos, A.C. Mello, and V.F. Santos. 2003. Behavior of sweet sorghum lines exposed to water deficit under controlled condition. Pesquisa Agropecaria Brasileira. 38: 973-979.
    · Anjum, F., M. Yaseen, E. Rasul, A. Wahid, and S. Anjum. 2003. Water stress in barley (Hordeum vulgare L.). II. Effect on chemical composition and chlorophyll contents. Pakistan Journal of Agricultural Science. 40: 45-49.
    · Anonymous. 2002. AOAC. Official methods of analysis of the Association of Official’s Analytical Chemists, 17th Ed, Washington, DC.
    · Ashkavand, M., M. Roshdi, J. Khalili Mohaleh, F. Jalili, and A. HosseinPour .2013. Effect of drought stress during phenological stage and biofertilizer and nitrogen application on yield and yield components of corn (KSC 704). Journal of Crop Ecophysiology. 6(4): 365-376.
    · Bhimireddy, P., M. Mallaredy., G. Subbalah., K. Chandra, and P. Ranindar. 2017. Perfomance of no-till maize under drip-fertigation in a double cropping system in semiarid Telangana state of India. Maydica. 61(1): 238- 245.
    · Branka, K., G. Bosko, T. Angelina, and D. Goran. 2018. How irrigation water affects the yield and nutritional quality of maize (Zea mays L.) in a temperate climate. Polish Journal of Environmental Studies. 27(3): 1123–1131.
    · Cay, Y.X., W. Wang, and Q.S. Zhu. 2007. Effects of water stress on nutrient quality and accumulation of protein in rice grains. Chinese Journal of Plant Ecology. 31: 536-543.
    · Davey, M.W., E. Stals, B. Panis, J. Keulemans, and R.I. Swennen. 2005. High-throughput determination of malondialdehyde in plant tissues. Analytical Biochemistry. 347: 201-207.
    · Earl, H., and R.F. Davis. 2003. Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agronomy Journal. 95: 688-696.
    · Farooq, M., A. Wahid, N. Kobayashi, D. Fujita, and S.M.A. Basra. 2008. Plant drought stress: effects, mechanisms and management. Agronomy of Sustainable Development. 29: 185-212.
    · Fazeli Rostompoor, M., M. Yarnia, and R. Farokhzadeh Khoee. 2012. Effect of superab A200 and drought stress on dry matter yield in forage sorghum. American-Eurasian Journal of Agricultural and Environmental Sciences. 12(2): 231-236.
    · Fotouhi K., J. Ahmdaly, A. Noorjo, A. Pedram, and A. Khorshid. 2009. Irrigation management under water discharge permit at the different stages of sugar beet grown in Miandoab region. Journal of Sugar Beet. 24: 43–60. (In Persian).
    · Ge, T.D., G. Suif, S. Nie, N.B. Sun, H. Xiao, and C.L. Tong. 2010. Differential responses of yield and selected nutritional compositions to drought stress in summer maize grains. Journal of Plant Nutrition. 33: 1811- 1818.
    Jiang, Y, and B. Huang. 2001. Osmotic adjustment and root growth associated with drought preconditioning enhanced heat tolerance in Kentucky bluegrass. Crop Science. 41: 1168–1173.
    · Kafi, M., H. Asadi, and A. Ganjeali. 2010. Possible utilization of high salinity waters and application of low amounts of water for production of the halophyte Kochia scoparia as lternative fodder in saline agroecosystems. Agricultural Water Management. 97: 139-147.
    · Kamara, A.Y., A. Menkir, B. Badu-apraku, and O. Ibikunle. 2003. The influence of drought stress on growth, yield and yield components of selected maize genotypes. Journal of Agricultural Science. 141: 43-50.
    · Kant, S., and U. Kafkafi. 2002. Potassium and abiotic stresses in plants, in potassium for sustainable crop production, eds N. S. Pasricha and S. K. Bansal (Gurgaon: Potash Institute of India), 233–251.
    · Khadem, S. A., M. Galavi, M. Ramrodi, S.R. Mousavi, M.J. Rousta, and M.R. Moghadam. 2010. Effect of animal manure and superabsorbent polymer on corn leaf relative water content, cell membrane stability and leaf chlorophyll content under dry condition. Australian Journal of Crop Science. 4 (8): 642-647.
    · Khaleghi, E., K. Arzani, N. Moallemi, and M. Barzegar. 2012. Evaluation of chlorophyll content and chlorophyll fluorescence parameters and relationships between chlorophyll a, b and chlorophyll content index under water stress in Olea europaea cv. Dezful. World Academy of Science, Engineering and Technology. 68: 1153-1157.
    · Khalesroo, S., M. Aghaalikhani, and S.A.M. Moddares Sanavy. 2010. Effect of nitrogen fertilizer on yield and quality of forage maize, pearl millet and sorghum in double-cropping system. Iranian Journal of Field Crops Research. 7: 930–938. (In Persian).
    · Kiani, S.P., P. Maury, A. Sarrafi, and P. Grieu. 2008. QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant Science. 175: 565-573.
    · Lafitte, R. 2002. Relationship between leaf relative water content during reproductive stage, water deficit and grain formation in rice. Field Crop Research. 76:165–174.
    · Lichtenhaler, H.K., and A.R. Wellburn. 1983. Determination of total carotenoids and chlorophylls of leaf in different solvents. Biochemical Society Transactions. 11: 591-592.
    · Lieth, H, and M. Lohmann. 2000. Cash crop halophytes for future halophyte growers. Institute of Environmental Systems Research, University of Osnabrück. 16 pp.
    · Manivannan P., C.A. Jaleel, B. Sankar, A. Kishorekumar, R. Somasundaram, G.M, Alagu Lakshmanan, and R. Panneerselvam. 2007. Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids and Surfaces B: Biointerfaces. 59: 141–149.
    · Mao, S., M.R. Islam, Y. Hu, X. Qian, F. Chen, and X. Xue. 2011. Antioxidant enzyme activities and lipid peroxidation in maize (Zea mays L.) following soil application of superabsorbent polymer at different fertilizer regimes. African Journal of Biotechnology. 10: 1000–1008.
    · Masoumi, A. 2010. Effect of drought stress on morphophysiological parameters of Kochia scoparia in field and greenhouse conditions. Ph.D. Thesis. Ferdowsi University of Mashhad. 127 pages. (In Persian).`
    · Massacci, A., S.M.L. Pietrosanti, S.K. Nematov, T.N. Chernikova, K. Thor, and J. Leipner. 2008. Responses of the photosynthetic apparatus of cotton (Gossypium hirsutum L.) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiology, Biochemistry. 46: 189-195.
    · Mata, C.G, and L. Lamattina. 2001. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiology. 126: 1196–1204.
    · Mengel, K., A. Kirkby, H. Kosegarten, and T. Appel. 2001. Principles of plant nutrition, 5th Edition.  Dordrecht, The Netherlands: Kluwer Academics.
    · Mirlouhi, A., N. Great, and M. Basiri. 2001. Effect of different levels of nitrogen on growth, yield and silage quality of three forage sorghum hybrids. Journal of Agricultural Science and Technology. 4(2): 115-105.
    · Najafinezhad, H., Z. Tahmasebi Sarvestani, S.A.M. Modarres Sanavy, and H. Naghavi. 2014. Effect of irrigation regimes and application of barley residue, zeolite and superabsorbent polymer on forage yield, cadmium, nitrogen and some physiological traits of corn and sorghum. International Journal of Biosciences. 5(3): 234-245.
    · Naseri, M., M. Khalatbari, and F. Paknejad. 2012. Evaluation the effect of different ranges zeolite consuming on yield and yield component and physiological characteristics of grain sorghum (Sorghum bicolor L.) Var. Kimiya under water deficit stress. Annals of Biological Research.7: 3547-3550.
    · Nayar, H., and D. Gupta. 2006. Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Experimental Botany. 58: 106-113.
    · Paknejad, F., E. Majidi heravan, Q. Noor mohammadi, A. Siyadat, and S. Vazan. 2007. Effects of drought stress on chlorophyll fluorescence parameters, chlorophyll content and grain yield of wheat cultivars. American Journal of Biochemistry and Biotechnology. 5(4): 162-169.
    · Sairam, R.K, and G.C, Srivastava. 2002. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long-term salt stress. Journal of Plant Science. 162: 897–904.
    · Salehi, M. 2010. Effect of salinity and water deficit on quantitative and qualitative production and physiological characteristics of Kochia Scoparia. Ph.D. Thesis Ferdowsi University of Mashhad. 189 pp. (In Persian).
    · Schlemmer, M.R., D.D. Francis, J.F. Shanahan, and J.S. Schepers. 2005. Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content. Agronomy Journal. 97: 106 -112.
    · Shao, H.B., L.Y. Chu, C.A. Jaleel, P. Manivannan, R. Panneerselvam, and M.A. Shao. 2009. Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the eco-environment in arid regions of the globe. Critical Reviews in Biotechnology. 29: 131-151.
    · Tambussi, E.A., C.G. Bartoli, J. Bettran, J.J. Guiamet, and J.C. Araus. 2000. Oxidative damage to thylakoids proteins in water stressed leaves of wheat (Triticum aestivum L.). Plant Physiology. 108: 398-404.
    · Valentovic, P., M. Luxova, L. Kolarovi, and O. Gasparikora. 2006. Effect of osmotic stress on compatible solutes content, memberane stability and water relation in two maize. Plant Soil Environment. 52(4): 186-191.
    . Yamada, M., H. Morishita, K. Urano, N. Shiozaki, K. Yamaguchi-Shinozaki, K. Shinozaki, and Y. Yoshiba, and Y. 2005. Effects of free proline accumulation in petunias under drought stress. Journal of Experimental Botany. 56: 1975-1981.