بهبـود خصـوصیات فیـزیـولـوژیکی و زراعـی کلــزای پاییــزه ( .Brassica napus L) با کاربرد نانو‌سلنیوم

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد فیزیولوژی گیاهان زراعی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 دانشیار گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 مربی دانشگاه جامع علمی-کاربردی، اردبیل، ایران

چکیده

بررسی اثر کاربرد نانوسلنیوم بر خصوصیات زراعی و عملکردی کلزای پاییزه، با محلول‌پاشی نانوسلنیوم در سه سطح (عدم محلول‌پاشی (صفر)، 25 و 50 میلی‌گرم در لیتر) در دو مرحله 8-6 برگی و مرحله پنجاه درصد گلدهی طی سال زراعی 98-97 در مزرعه تحقیقاتی دانشگاه محقق اردبیلی انجام شد. نتایج نشان داد که با کاربرد نانوسلنیوم میزان رنگیزه‌های فتوسنتزی و محتوای نسبی آب برگ‌ها به­طور معنی‌داری افزایش یافت. محلول‌پاشی بوته‌های کلزای پاییزه با غلظت 50 میلی­گرم در لیتر نانوسلنیوم موجب افزایش معنی‌دار میزان کلروفیل a، b و کلروفیل کل به­ترتیب به مقدار 04/37، 51/44 و 68/39 درصد نسبت به تیمار عدم محلول‌پاشی گردید. نانوسلنیوم از طریق افزایش میزان رنگیزه‌های فتوسنتزی و افزایش محتوای نسبی آب برگ‌ها موجب افزایش معنی‌دار ارتفاع بوته، تعداد شاخه فرعی و قطر ساقه کلزا شد. عملکرد کل، شاخص برداشت و عملکرد روغن دانه‌های حاصل از بوته‌های محلول‌پاشی شده با غلظت‌های 25 و 50 میلی‌‌گرم در لیتر نانوسلنیوم به­طور معنی‌داری بیشتر از تیمار شاهد بود. محلول‌پاشی بوته‌های کلزا در طی دو مرحله رویشی و پنجاه درصد گلدهی از طریق افزایش معنی‌دار تعداد خورجین در بوته، تعداد دانه در خورجین و وزن هزار دانه موجب افزایش عملکرد دانه در واحد سطح گردید. چنانکه، بیشترین افزایش عملکرد دانه در واحد سطح (16/34 درصدی) در مقایسه با شاهد در تیمار 50 میلی‌گرم در لیتر نانو‌سلنیوم به­دست آمد. به­طورکلی، کاربرد 50 میلی‌گرم در لیتر نانوسلنیوم تاثیر مثبت و معنی‌داری بر صفات فیزیولوژیکی و زراعی (رنگیزه‌های فتوسنتزی، محتوای نسبی آب برگ‌ها، ارتفاع بوته، تعداد شاخه فرعی، قطر ساقه، تعداد خورجین در بوته، تعداد دانه در خورجین و وزن هزار دانه) کلزای پاییزه داشت و این امر در نهایت موجب افزایش عملکرد اقتصادی گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Improvment of Physiological and Agronomic Characteristics of Winter Oilseed Rape (Brassica napus L.) with Nano-Selenium Application

نویسندگان [English]

  • Gholam Behzad 1
  • Parisa Sheikhzadeh 2
  • Nasser Zare 2
  • Mitra Rostami 3
1 MS.c. Graduated Student of Plant Physiology, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University, Ardabil, Iran
2 Associate Professor, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
3 Lecturer at Ardabil University of Applied Sciences, Ardabil, Iran
چکیده [English]

To investigate the effect of foliar selenium nanoparticle applications on the agronomic and yield characteristics of winter oilseed rape, with three levels (0 (control), 25 and 50 mg.L-1) at two growth stages (6-8 leaves and 50% flowering) at the research farm station of the University of Mohaghegh Ardabili during 2018-2019 was studied. The results showed that the selenium nanoparticle applications increased the photosynthetic pigments and the relative water content (RWC) of the leaves significantly. Foliar spraying with 50 mg.L-1 selenium nanoparticle increased in the chlorophyll a and b and total chlorophyll content by 37.04, 44.51 and 39.68%, respectively, as compared to the control treatment. On the other hands, selenium nanoparticle application increased the plant height, number of branches and stem diameter via improving the photosynthetic pigments content and RWC of winter oilseed rape significantly. The biological yield, harvest index and seed oil content of 25 and 50 mg.L-1 of selenium nanoparticle treatments were significantly higher than those of the control. The foliar spraying of oilseed rape plants with selenium nanoparticle applications improved the grain yield throught increase in the number of pods per plant, the number of seeds per pod and the 1000 grain weight significantly. Thus, the highest improvement in the grain yield per unit area (about 34.16 %) was obtained with application of 50 mg.L-1 selenium nanoparticles in comparison with control treatment. In general, the application of 50 mg.L-1 selenium nanoparticles had a positive and significant effect on the physiological (photosynthetic pigments content and RWC) and agronomical characteristics at plants, as to the plant height, branches number, stem diameter, the number of pods per plant, the number of seeds per pod, the 1000-grain weight and seed oil content of winter rape.

کلیدواژه‌ها [English]

  • Chlorophyll
  • Grain yield
  • Oilseed crop
  • selenium nanoparticles
Ajiboso, S.O., and G.A. Adenuga. 2012. The influence of zinc and selenium on some biochemical responses of Vigna unguiculata and Zea mays to water deficit condition and rehydration. An International Journal of the Nigerian Society for Experimental Biology. 24(3): 108-115.
Alda, S., M. Camelia, T. Cristina-Elena, P. Mirela, R. Diana, and D. Delia. 2011. The influence of sodium selenite on biometric parameters of wheat, barley and oat seedlings. Journal of Horticulture, Forestry and Biotechnology. 15(4): 8- 12
Amerian, M., F. Dashti, and M. Delshad. 2015. Effect of different sources and levels of selenium on growth and some physiological characteristics of Onion (Allium cepa). Plant Production Technology. 6(2): 163-179. (In Persian).
2017. ISTA (International Seed Testing Association) International Rules for Seed Testing. Bassersdorf, Switzerland.
2019. FAO. Food outlook. Global market analysis. http://www.fao. foodoutlook.comArnon, D.I. 1949. Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiology. 24: 1-24.
Aytac, Z., N. Gulmezoglu, Z. Sirel, I. Tolay, and A. Torun. 2014. The effect of zinc on yield, yield components and micronutrient concentrations in the seeds of safflower genotypes (Carthamus tinctorius ). Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 42(1): 202-208.
Boldrin, P.F., V. Faquin, S.J. Ramos, K.V.F. Boldrin, F.W. Ávila, and L.R.G. Guilherme. 2014. Soil and foliar application of selenium in rice bio fortification. Journal of Food Composition and Analysis. 31(2): 238-244.
Bybordi, A. 2016. Effect of zeolite and solubility of selenium, silicon on yield, yield components and some physiological properties of canola under stress conditions. Iranian Journal of Field Crops Research. 14(1): 154-170. (In Persian).
Dadnia, M. 2018. Wheat Response (Triticum aestivum) to selenium under normal irrigation and water deficit conditions. Journal of Crop Ecophysiology. 12(1): 36-21. (In Persian).
Davoudi, A., B. Mirshekari, A. Shirani Rad, F. Farahvash, and V. Rashidi. 2018. Effect of selenium on yields, yield components and oil yield of different rapeseed genotypes under normal and delayed planting conditions. Journal of Plant Ecophysiology. 10(34): 121-131. (In Persian).
Davoudi, A., H. Zeinalzadeh-Tabrizi, and A. Shirani-Rad. 2020. Effect of selenium foliar application on some quantitative and qualitative characteristics of rapeseed cultivars under end-season thermal stress. Journal of Crop Breeding. 11(32): 74-87. (In Persian).
Djanaguiraman, M., D. Durga Devi, A.K. Shanker, J.A. Sheeba, and U. Bangarusamy. 2005. Selenium-an antioxidative protectant in soybean during senescence. Plant and Soil. 272: 77- 86.
Ekanayake, L.J., D. Thavarajah, E. Vial, B. Schatz, R. McGee, and P. Thavarajah. 2015. Selenium fertilization on lentil (Lens culinaris Medikus) grain yield, seed selenium concentration, and antioxidant activity. Field Crop Research. 177: 9-14.
Elemike, E., I.M. Euzoh, D.C. Onwudiwe, and O.O. Babalola. 2019. The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Applied Sciences. 9(3): 1-32.
Feng, R., C. Wei, and S. Tu. 2013. The roles of selenium in protecting plants against abiotic stresses. Environmental and Experimental Botany. 87: 58–68.
Ghasemi, Y., K. Ghasemi, H. Pirdashti, and R. Asgharzadeh. 2016. Effect of selenium enrichment on the growth, photosynthesis and mineral nutrition of broccoli. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 8(2): 199-203.
Haghani, N., M. Amerian, and M. Khorami Vafa. 2020. The effect of drought stress and selenium on some growth and physiological characteristics of isfahan yellow landrace onions (Allium cepa). Journal of Crop Ecophysiology. 14(1): 63-84. (In Persian).
Haghighi, M., and J.A. Teixeira da Silva. 2016. Influence of selenium on cadmium toxicity in cucumber (Cucumis sativus 4200) at an early growth stage in a hydroponic system. Communications in Soil Science and Plant Analysis. 2(47): 142-155.
Han, D., X. Li, S. Xiong, S. Tu, Z. Chen, J. Li, and Z. Xie. 2013. Selenium uptake, speciation and stressed response of Nicotiana tabacum Environmental and Experimental Botany. 95: 6-14.
Hasanuzzaman, M., M.A. Hossain, and M. Fujita. 2010. Selenium in higher plants: physiological role, antioxidant metabolism and abiotic stress tolerance. Journal of Plant Sciences. 5(4): 354-375.
Holaday, A.S., S.W. Ritchiet, and H.T. Nguyen. 1992. Effects of water deficit on gas-exchange parameters and ribulose 1,5-bisphosphate carboxylase activation in wheat. Environmental and Experimental Botany. 32(4): 403-410.
Jiang, C., C. Zu, J. Shen, F. Shao, and T. Li. 2015. Effects of selenium on the growth and photosynthetic characteristics of flue-cured tobacco (Nicotiana tabacum). Acta Societatis Botanicorum Poloniae. 84(1): 71–77.
Kashin, V.K., and O.I. Shubina. 2011. Biological effect and selenium accumulation in wheat under conditions of selenium deficient biogeochemical province. Chemistry for Sustainable Development. 19: 145-150.
Kraljic´, K., D. Sˇkevin, M. Pospisˇil, M. Obranovic´, and S. Nederal. 2013. Quality of rapeseed oil produced by conditioning seeds at modest temperatures. Journal of the American Oil Chemists' Society. 90: 589-599.
Madani, A., A.H. Makarem, F. Vazin, and M. Joudi. 2012. The impact of post-anthesis nitrogen and water availability on yield formation of winter wheat. Plant, Soil and Environment. 58(1): 9-14.
Mohamadipoor, R., S. Sedaghathoor, and A. Mahboub Khomami. 2013. Effect of application of iron fertilizers in two methods 'foliar and soil application' on growth characteristics of Spathyphyllum illusion. European Journal of Experimental Biology. 3(1): 232-240.
Molazem, D., J. Azimi, and T. Dideban. 2013. Measuring the yield and its components, in the canola in different planting date and plant density of the West Guilan. International Journal of Agriculture and Crop Sciences. 6: 869-872.
Nawaz, F., R. Ahmad, M.Y. Ashraf, E.A. Waraich, and S.Z. Khan. 2015. Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicology and Environmental Safety. 113:191-200.
Nazemi, L., S. Nazmara, M.R. Eshraghyan, S. Nasseri, K. Djafarian, M. Yunesian, H. Sereshti, A. Moameni, and S.J. Shahtaheri. 2012. Selenium status in soil, water and essential crops of Iran. Iranian Journal of Environmental Health Sciences and Engineering. 9(11): 1-8. (In Persian).
Nour Ali, S., and H. Madani. 2017. Improvement of some physiological traits, yield and yield components of wheat and barley by using sodium selenate and sodium selenite in dry land conditions. Journal of Crop Ecophysiology. 11(1): 17-30. (In Persian)
Peyvandi, M., H. Parande, and M. Mirza. 2011. Comparison of nano Fe chelate with Fe chelate effect on growth parameters and antioxidant enzymes activity of Ocimum basilicum. New Cellular and Molecular Biotechnology Journal. 1(4): 89-98. (In Persian).
Poldma, P., U. Moor, T. Tonutare, K. Herodes, and R. Rebane. 2013. Selenium treatment under field conditions affects mineral nutrition, yield and antioxidant properties of bulb onion (Allium cepa). Acta Scientiarum Polonorum- Hortorum Cultus. 12(6): 167-181.
Prasad, T.N.V.K.V., P. Sudhakar, Y. Sreenivasulu, P. Latha, V. Munaswamy, K. Raja Reddy, T.S. Sreeprasad, P.R. Sajanlal, and T. Pradeep. 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition. 35(6): 905-927.
Rameeh, V. 2012. Evaluation of the planting dates effects on yield and yield associated traits in rapeseed advanced lines. International Journal of Agriculture Innovations and Research. 1(1): 7-11.
Rodrigo, S., O. Santamaria, F.J. Lopez-Bellido, and M.J. Poblaciones. 2013. Agronomic selenium bio fortification of two-rowed barley under Mediterranean conditions. Plant, Soil and Environment. 3(3): 115-120.
Saffaryazdi, A., M. Lahouti, A. Ganjeali, and H. Bayat. 2012. Impact of selenium supplementation on growth and selenium accumulation on spinach (Spinacia oleraceae ) plants. Notulae Scientia Biologicae. 4: 95-100.
Schiavon, M., S. Acqua, A. Mietto, E.A. Pilon-Smits, P. Sambo, A. Masi, and M. Malagoli. 2013. Selenium fertilization alters the chemical composition and antioxidant constituents of tomato (Solanum lycopersicon). Journal of Agricultural and Food Chemistry. 61(44): 10542-10554.
Seppänen, M., M. Turakainen, and H. Hartikainen. 2003. Selenium effects on oxidative stress in potato. Plant Science. 165(2): 311-319.
Shedeed, S.I., Z.F. Fawzy, and A.E.M. El-Bassiony. 2018. Nano and mineral selenium foliar application effect on pea plants (Pisum sativum). Bioscince Research. 15(2): 645-654.
Singh, R., A.K. Upadhyay, and D.P. Singh. 2018. Regulation of oxidative stress and mineral nutrient status by selenium in arsenic treated crop plant Oryza sativa. Ecotoxicology and Environmental Safety. 148: 105-113.
Talukdar, D. 2013. Selenium priming selectively ameliorates weed–induced phytotoxicity by modulating antioxidant defense components in Lentil (Lens culinaris) and Grass Pea (Lathyrus sativus L.). Annual Research and Review in Biology. 3(3): 195-212.
Thavarajah, D., P. Thavarajah, E. Vial, M. Gebhardt, C. Lacher, S. Kumar, and G.F. Combs. 2015. Will selenium increase lentil (Lens culinaris Medik) yield and seed quality? Frontiers in Plant Science. 6: 356-364.
Wang, Y., Y. Hu, Y. Duan, R. Feng, and H. Gong. 2016. Silicon reduces long-term cadmium toxicities in potted garlic plants. Acta Physiologiae Plantarum. 38(8): 211-216.